최근 포스트

LightGBM

XGBoost는 매우 뛰어난 부스팅 알고리즘이지만 XGBoost에서 GridSearchCV로 수행시간이 너무 오래 걸려서 많은 파라미터를 튜닝하기에 어려움을 겪을 수밖에 없다.

배깅, 부스팅 그리고 스태킹: Bagging, Boosting and Stacking

앙상블 방법은 예측기가 가능한 한 서로 독립적일 때 최고의 성능을 발휘한다. 다양한 분류기를 얻는 한 가지 방법은 각기 다른 알고리즘으로 학습시키는 것이다. 이렇게 하면 매우 다른 종류의 오차를 만들 가능성이 높기 때문에 앙상블 모델의 정확도를 향상시킨다.