배깅, 부스팅 그리고 스태킹: Bagging, Boosting and Stacking
앙상블 방법은 예측기가 가능한 한 서로 독립적일 때 최고의 성능을 발휘한다. 다양한 분류기를 얻는 한 가지 방법은 각기 다른 알고리즘으로 학습시키는 것이다. 이렇게 하면 매우 다른 종류의 오차를 만들 가능성이 높기 때문에 앙상블 모델의 정확도를 향상시킨다.
앙상블 방법은 예측기가 가능한 한 서로 독립적일 때 최고의 성능을 발휘한다. 다양한 분류기를 얻는 한 가지 방법은 각기 다른 알고리즘으로 학습시키는 것이다. 이렇게 하면 매우 다른 종류의 오차를 만들 가능성이 높기 때문에 앙상블 모델의 정확도를 향상시킨다.
Cross Entropy
배치 정규화 정규화는 머신 러닝 모델에 주입되는 샘플들을 균일하게 만드는 광범위한 방법이다. 이 방법은 모델이 학습하고 새로운 데이터에 잘 일반화되도록 돕는다. 데이터 정규화의 일반적인 형태는 다음과 같다.
활성화 함수의 필요성 활성화 함수는 비선형성(non-linearity)라고도 부른다. 활성화 함수가 없다면 Dense층은 선형적인 연산인 점곱과 덧셈 2개로 구성된다